Skip to content

structure

Classes

StepInfo

Bases: KiaraModel

Source code in kiara/models/module/pipeline/structure.py
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
class StepInfo(KiaraModel):

    _kiara_model_id = "info.pipeline_step"

    step: PipelineStep = Field(description="The pipeline step object.")
    inputs: Dict[str, StepInputRef] = Field(
        description="Reference(s) to the fields that feed this steps inputs."
    )
    outputs: Dict[str, StepOutputRef] = Field(
        description="Reference(s) to the fields that are fed by this steps outputs."
    )
    required: bool = Field(
        description="Whether this step is always required or whether all his outputs feed into optional input fields."
    )
    processing_stage: int = Field(
        description="The index of the processing stage of this step."
    )

    @property
    def step_id(self) -> str:
        return self.step.step_id

Attributes

step: PipelineStep = Field(description='The pipeline step object.') class-attribute
inputs: Dict[str, StepInputRef] = Field(description='Reference(s) to the fields that feed this steps inputs.') class-attribute
outputs: Dict[str, StepOutputRef] = Field(description='Reference(s) to the fields that are fed by this steps outputs.') class-attribute
required: bool = Field(description='Whether this step is always required or whether all his outputs feed into optional input fields.') class-attribute
processing_stage: int = Field(description='The index of the processing stage of this step.') class-attribute
step_id: str property

PipelineStage

Bases: KiaraModel

Source code in kiara/models/module/pipeline/structure.py
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
class PipelineStage(KiaraModel):

    _kiara_model_id = "info.pipeline_stage"

    @classmethod
    def from_pipeline_structure(
        cls, structure: "PipelineStructure"
    ) -> Dict[int, "PipelineStage"]:
        used_pipeline_inputs: Set[str] = set()
        used_pipeline_outputs: Set[str] = set()
        result = {}
        for idx, stage in enumerate(structure.processing_stages, start=1):
            stage_steps = []
            inputs = []
            outputs = []

            for step_id in stage:
                step = structure.get_step(step_id=step_id)
                stage_steps.append(step.step_id)
                for pipeline_input, ref in structure.pipeline_input_refs.items():
                    if pipeline_input in used_pipeline_inputs:
                        continue
                    for con_inp in ref.connected_inputs:
                        if con_inp.step_id == step_id and pipeline_input not in inputs:
                            inputs.append(pipeline_input)
                for pipeline_output, out_ref in structure.pipeline_output_refs.items():
                    if pipeline_output in used_pipeline_outputs:
                        continue
                    if out_ref.connected_output.step_id == step_id:
                        outputs.append(pipeline_output)

            stage_used_inputs = list(used_pipeline_inputs)
            stage_used_outputs = list(used_pipeline_outputs)

            result[idx] = PipelineStage(
                stage_index=idx,
                steps=stage_steps,
                pipeline_inputs=inputs,
                pipeline_outputs=outputs,
                previous_inputs=stage_used_inputs,
                previous_outputs=stage_used_outputs,
            )

            used_pipeline_inputs.update(inputs)
            used_pipeline_outputs.update(outputs)

        return result

    stage_index: int = Field(description="The index of this stage.")
    steps: List[str] = Field(
        description="The pipeline steps that are executed in this stage."
    )
    pipeline_inputs: List[str] = Field(
        description="The pipeline inputs required for this stage."
    )
    pipeline_outputs: List[str] = Field(
        description="The pipeline outputs that are ready once this stage is processed."
    )
    previous_inputs: List[str] = Field(
        description="Pipeline inputs that are already set by this stage."
    )
    previous_outputs: List[str] = Field(
        description="Pipeline outputs that are already computed by this stage."
    )

Attributes

stage_index: int = Field(description='The index of this stage.') class-attribute
steps: List[str] = Field(description='The pipeline steps that are executed in this stage.') class-attribute
pipeline_inputs: List[str] = Field(description='The pipeline inputs required for this stage.') class-attribute
pipeline_outputs: List[str] = Field(description='The pipeline outputs that are ready once this stage is processed.') class-attribute
previous_inputs: List[str] = Field(description='Pipeline inputs that are already set by this stage.') class-attribute
previous_outputs: List[str] = Field(description='Pipeline outputs that are already computed by this stage.') class-attribute

Functions

from_pipeline_structure(structure: PipelineStructure) -> Dict[int, PipelineStage] classmethod
Source code in kiara/models/module/pipeline/structure.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
@classmethod
def from_pipeline_structure(
    cls, structure: "PipelineStructure"
) -> Dict[int, "PipelineStage"]:
    used_pipeline_inputs: Set[str] = set()
    used_pipeline_outputs: Set[str] = set()
    result = {}
    for idx, stage in enumerate(structure.processing_stages, start=1):
        stage_steps = []
        inputs = []
        outputs = []

        for step_id in stage:
            step = structure.get_step(step_id=step_id)
            stage_steps.append(step.step_id)
            for pipeline_input, ref in structure.pipeline_input_refs.items():
                if pipeline_input in used_pipeline_inputs:
                    continue
                for con_inp in ref.connected_inputs:
                    if con_inp.step_id == step_id and pipeline_input not in inputs:
                        inputs.append(pipeline_input)
            for pipeline_output, out_ref in structure.pipeline_output_refs.items():
                if pipeline_output in used_pipeline_outputs:
                    continue
                if out_ref.connected_output.step_id == step_id:
                    outputs.append(pipeline_output)

        stage_used_inputs = list(used_pipeline_inputs)
        stage_used_outputs = list(used_pipeline_outputs)

        result[idx] = PipelineStage(
            stage_index=idx,
            steps=stage_steps,
            pipeline_inputs=inputs,
            pipeline_outputs=outputs,
            previous_inputs=stage_used_inputs,
            previous_outputs=stage_used_outputs,
        )

        used_pipeline_inputs.update(inputs)
        used_pipeline_outputs.update(outputs)

    return result

PipelineStructure

Bases: KiaraModel

An object that holds one or several steps, and describes the connections between them.

Source code in kiara/models/module/pipeline/structure.py
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
class PipelineStructure(KiaraModel):
    """An object that holds one or several steps, and describes the connections between them."""

    _kiara_model_id = "instance.pipeline_structure"

    pipeline_config: PipelineConfig = Field(
        description="The underlying pipeline config."
    )
    steps: List[PipelineStep] = Field(description="The pipeline steps ")
    # stages: Mapping[int, PipelineStage] = Field(description="Details about each of the pipeline stages.")
    input_aliases: Dict[str, str] = Field(description="The input aliases.")
    output_aliases: Dict[str, str] = Field(description="The output aliases.")

    @root_validator(pre=True)
    def validate_pipeline_config(cls, values) -> Dict[str, Any]:

        pipeline_config = values.get("pipeline_config", None)
        if not pipeline_config:
            raise ValueError("No 'pipeline_config' provided.")

        if len(values) != 1:
            raise ValueError(
                "Only 'pipeline_config' key allowed when creating a pipeline structure object."
            )

        if isinstance(pipeline_config, Mapping):
            pipeline_config = PipelineConfig(**pipeline_config)
        _config: PipelineConfig = pipeline_config
        _steps: List[PipelineStep] = list(_config.steps)

        _input_aliases: Dict[str, str] = dict(_config.input_aliases)
        _output_aliases: Dict[str, str] = dict(_config.output_aliases)

        invalid_input_aliases = [a for a in _input_aliases.values() if "." in a]
        if invalid_input_aliases:
            raise InvalidPipelineConfig(
                f"Invalid input aliases, aliases can't contain special characters: {', '.join(invalid_input_aliases)}.",
                config=values.get("pipeline_config", None),
                details=f"Invalid characters: {', '.join(invalid_input_aliases)}.",
            )
        invalid_output_aliases = [a for a in _input_aliases.values() if "." in a]
        if invalid_input_aliases:
            raise InvalidPipelineConfig(
                f"Invalid input aliases, aliases can't contain special characters: {', '.join(invalid_output_aliases)}.",
                config=values.get("pipeline_config"),
                details=f"Invalid characters: {', '.join(invalid_output_aliases)}.",
            )

        valid_input_names = set()
        for step in _steps:
            for input_name in step.module.input_names:
                valid_input_names.add(f"{step.step_id}.{input_name}")
        invalid_input_aliases = [
            a for a in _input_aliases.keys() if a not in valid_input_names
        ]
        if invalid_input_aliases:
            msg = "Invalid input reference(s)."
            details = "Invalid reference(s):\n"
            for iia in invalid_input_aliases:
                details += f" - {iia}\n"
            details += "\nMust be one of: \n"
            for name in valid_input_names:
                details += f"  - {name}\n"

            raise InvalidPipelineConfig(
                msg, config=values.get("pipeline_config", {}), details=details
            )

        valid_output_names = set()
        for step in _steps:
            for output_name in step.module.output_names:
                valid_output_names.add(f"{step.step_id}.{output_name}")
        invalid_output_names = [
            a for a in _output_aliases.keys() if a not in valid_output_names
        ]
        if invalid_output_names:

            msg = "Invalid output reference(s)."
            details = "Invalid reference(s):\n"
            for iia in invalid_output_names:
                details += f" - {iia}\n"
            details += "\nMust be one of: \n"
            for name in valid_output_names:
                details += f"  - {name}\n"

            raise InvalidPipelineConfig(msg, values.get("pipeline_config", {}), details)

        # stages = PipelineStage.from_pipeline_structure(stages=)

        # values["steps"] = {step.step_id: step for step in _steps}
        values["steps"] = _steps
        values["input_aliases"] = _input_aliases
        values["output_aliases"] = _output_aliases
        return values

    # this is hardcoded for now
    _add_all_workflow_outputs: bool = PrivateAttr(default=False)
    _constants: Dict[str, Any] = PrivateAttr(default=None)  # type: ignore
    _defaults: Dict[str, Any] = PrivateAttr(None)  # type: ignore

    _execution_graph: nx.DiGraph = PrivateAttr(None)  # type: ignore
    _data_flow_graph: nx.DiGraph = PrivateAttr(None)  # type: ignore
    _data_flow_graph_simple: nx.DiGraph = PrivateAttr(None)  # type: ignore

    _processing_stages: List[List[str]] = PrivateAttr(None)  # type: ignore
    _stages_info: Mapping[int, PipelineStage] = PrivateAttr(None)  # type: ignore

    # holds details about the (current) processing steps contained in this workflow
    _steps_details: Dict[str, StepInfo] = PrivateAttr(None)  # type: ignore
    # _info: "PipelineStructureInfo" = PrivateAttr(None)  # type: ignore

    def _retrieve_data_to_hash(self) -> Any:
        return {
            "steps": [step.instance_cid for step in self.steps],
            "input_aliases": self.input_aliases,
            "output_aliases": self.output_aliases,
        }

    def _retrieve_id(self) -> str:
        return self.pipeline_config.instance_id

    @property
    def steps_details(self) -> Mapping[str, StepInfo]:

        if self._steps_details is None:
            self._process_steps()
        return self._steps_details  # type: ignore

    @property
    def step_ids(self) -> Iterable[str]:
        if self._steps_details is None:
            self._process_steps()
        return self._steps_details.keys()  # type: ignore

    @property
    def constants(self) -> Mapping[str, Any]:

        if self._constants is None:
            self._process_steps()
        return self._constants  # type: ignore

    @property
    def defaults(self) -> Mapping[str, Any]:

        if self._defaults is None:
            self._process_steps()
        return self._defaults  # type: ignore

    def get_step(self, step_id: str) -> PipelineStep:

        d = self.steps_details.get(step_id, None)
        if d is None:
            raise Exception(f"No step with id: {step_id}")

        return d.step

    def get_step_input_refs(self, step_id: str) -> Mapping[str, StepInputRef]:

        d = self.steps_details.get(step_id, None)
        if d is None:
            raise Exception(f"No step with id: {step_id}")

        return d.inputs

    def get_step_output_refs(self, step_id: str) -> Mapping[str, StepOutputRef]:

        d = self.steps_details.get(step_id, None)
        if d is None:
            raise Exception(f"No step with id: {step_id}")

        return d.outputs

    def get_step_details(self, step_id: str) -> StepInfo:

        d = self.steps_details.get(step_id, None)
        if d is None:
            raise Exception(f"No step with id: {step_id}")

        return d

    @property
    def execution_graph(self) -> nx.DiGraph:
        if self._execution_graph is None:
            self._process_steps()
        return self._execution_graph

    @property
    def data_flow_graph(self) -> nx.DiGraph:
        if self._data_flow_graph is None:
            self._process_steps()
        return self._data_flow_graph

    @property
    def data_flow_graph_simple(self) -> nx.DiGraph:
        if self._data_flow_graph_simple is None:
            self._process_steps()
        return self._data_flow_graph_simple

    @property
    def processing_stages(self) -> List[List[str]]:
        if self._steps_details is None:
            self._process_steps()
        return self._processing_stages

    @property
    def processing_stages_info(self) -> Mapping[int, PipelineStage]:
        if self._stages_info is not None:
            return self._stages_info

        self._stages_info = PipelineStage.from_pipeline_structure(self)
        return self._stages_info

    @lru_cache()
    def _get_node_of_type(self, node_type: str):
        if self._steps_details is None:
            self._process_steps()

        return [
            node
            for node, attr in self._data_flow_graph.nodes(data=True)
            if attr["type"] == node_type
        ]

    @property
    def steps_input_refs(self) -> Dict[str, StepInputRef]:
        return {
            node.alias: node
            for node in self._get_node_of_type(node_type=StepInputRef.__name__)
        }

    @property
    def steps_output_refs(self) -> Dict[str, StepOutputRef]:
        return {
            node.alias: node
            for node in self._get_node_of_type(node_type=StepOutputRef.__name__)
        }

    @property
    def pipeline_input_refs(self) -> Dict[str, PipelineInputRef]:
        return {
            node.value_name: node
            for node in self._get_node_of_type(node_type=PipelineInputRef.__name__)
        }

    @property
    def pipeline_output_refs(self) -> Dict[str, PipelineOutputRef]:
        return {
            node.value_name: node
            for node in self._get_node_of_type(node_type=PipelineOutputRef.__name__)
        }

    @property
    def pipeline_inputs_schema(self) -> Mapping[str, ValueSchema]:

        schemas = {
            input_name: w_in.value_schema
            for input_name, w_in in self.pipeline_input_refs.items()
        }
        return schemas

    @property
    def pipeline_outputs_schema(self) -> Mapping[str, ValueSchema]:
        return {
            output_name: w_out.value_schema
            for output_name, w_out in self.pipeline_output_refs.items()
        }

    def get_pipeline_inputs_schema_for_step(
        self, step_id: str
    ) -> Mapping[str, ValueSchema]:

        result = {}
        for field, ref in self.pipeline_input_refs.items():
            for con in ref.connected_inputs:
                if con.step_id == step_id:
                    result[field] = ref.value_schema
                    break
        return result

    def get_pipeline_outputs_schema_for_step(
        self, step_id: str
    ) -> Mapping[str, ValueSchema]:

        result = {}
        for field, ref in self.pipeline_output_refs.items():
            if ref.connected_output.step_id == step_id:
                result[field] = ref.value_schema

        return result

    def get_processing_stage(self, step_id: str) -> int:
        """Return the processing stage for the specified step_id.

        Returns the stage nr (starting with '1').
        """

        for index, stage in enumerate(self.processing_stages, start=1):
            if step_id in stage:
                return index

        raise Exception(f"Invalid step id '{step_id}'.")

    def step_is_required(self, step_id: str) -> bool:
        """Check if the specified step is required, or can be omitted."""

        return self.get_step_details(step_id=step_id).required

    def _process_steps(self) -> None:
        """The core method of this class, it connects all the processing modules, their inputs and outputs."""

        steps_details: Dict[str, Any] = {}
        execution_graph = nx.DiGraph()
        execution_graph.add_node("__root__")
        data_flow_graph = nx.DiGraph()
        data_flow_graph_simple = nx.DiGraph()
        processing_stages = []
        constants = {}
        structure_defaults = {}

        # temp variable, to hold all outputs
        outputs: Dict[str, StepOutputRef] = {}

        # process all pipeline and step outputs first
        _temp_steps_map: Dict[str, PipelineStep] = {}
        pipeline_outputs: Dict[str, PipelineOutputRef] = {}
        for step in self.steps:

            _temp_steps_map[step.step_id] = step

            if step.step_id in steps_details.keys():
                raise Exception(
                    f"Can't process steps: duplicate step_id '{step.step_id}'"
                )

            steps_details[step.step_id] = {
                "step": step,
                "outputs": {},
                "inputs": {},
                "required": True,
            }

            data_flow_graph.add_node(step, type="step")
            data_flow_graph_simple.add_node(step, type="step")

            # go through all the module outputs, create points for them and connect them to pipeline outputs
            for output_name, schema in step.module.outputs_schema.items():

                step_output = StepOutputRef(
                    value_name=output_name,
                    value_schema=schema,
                    step_id=step.step_id,
                    pipeline_output=None,
                )

                steps_details[step.step_id]["outputs"][output_name] = step_output
                step_alias = generate_step_alias(step.step_id, output_name)
                outputs[step_alias] = step_output

                # step_output_name = generate_pipeline_endpoint_name(
                #     step_id=step.step_id, value_name=output_name
                # )
                step_output_name: Union[None, str] = f"{step.step_id}.{output_name}"
                if not self.output_aliases:
                    raise NotImplementedError()
                if step_output_name in self.output_aliases.keys():
                    step_output_name = self.output_aliases[step_output_name]  # type: ignore
                else:
                    if not self._add_all_workflow_outputs:
                        # this output is not interesting for the workflow
                        step_output_name = None

                if step_output_name:
                    step_output_address = StepValueAddress(
                        step_id=step.step_id, value_name=output_name
                    )
                    pipeline_output = PipelineOutputRef(
                        value_name=step_output_name,
                        connected_output=step_output_address,
                        value_schema=schema,
                    )
                    pipeline_outputs[step_output_name] = pipeline_output
                    step_output.pipeline_output = pipeline_output.value_name

                    data_flow_graph.add_node(
                        pipeline_output, type=PipelineOutputRef.__name__
                    )
                    data_flow_graph.add_edge(step_output, pipeline_output)

                    data_flow_graph_simple.add_node(
                        pipeline_output, type=PipelineOutputRef.__name__
                    )
                    data_flow_graph_simple.add_edge(step, pipeline_output)

                data_flow_graph.add_node(step_output, type=StepOutputRef.__name__)
                data_flow_graph.add_edge(step, step_output)

        # now process inputs, and connect them to the appropriate output/pipeline-input points
        existing_pipeline_input_points: Dict[str, PipelineInputRef] = {}
        for step in self.steps:

            other_step_dependency: Set = set()
            # go through all the inputs of a module, create input points and connect them to either
            # other module outputs, or pipeline inputs (which need to be created)

            module_constants: Mapping[str, Any] = step.module.get_config_value(
                "constants"
            )

            for input_name, schema in step.module.inputs_schema.items():

                matching_input_links: List[StepValueAddress] = []
                is_constant = input_name in module_constants.keys()

                for value_name, input_links in step.input_links.items():
                    if value_name == input_name:
                        for input_link in input_links:
                            if input_link in matching_input_links:
                                raise Exception(f"Duplicate input link: {input_link}")
                            matching_input_links.append(input_link)

                if matching_input_links:
                    # this means we connect to other steps output

                    connected_output_points: List[StepOutputRef] = []
                    connected_outputs: List[StepValueAddress] = []

                    for input_link in matching_input_links:
                        output_id = generate_step_alias(
                            input_link.step_id, input_link.value_name
                        )

                        if output_id not in outputs.keys():
                            raise Exception(
                                f"Can't connect input '{input_name}' for step '{step.step_id}': no output '{output_id}' available. Available output names: {', '.join(outputs.keys())}"
                            )
                        connected_output_points.append(outputs[output_id])
                        connected_outputs.append(input_link)

                        other_step_dependency.add(input_link.step_id)

                    step_input_point = StepInputRef(
                        step_id=step.step_id,
                        value_name=input_name,
                        value_schema=schema,
                        is_constant=is_constant,
                        connected_pipeline_input=None,
                        connected_outputs=connected_outputs,
                    )

                    for op in connected_output_points:
                        op.connected_inputs.append(step_input_point.address)
                        data_flow_graph.add_edge(op, step_input_point)
                        data_flow_graph_simple.add_edge(
                            _temp_steps_map[op.step_id], step_input_point
                        )  # TODO: name edge
                        data_flow_graph_simple.add_edge(
                            step_input_point, step
                        )  # TODO: name edge

                else:
                    # this means we connect to pipeline input
                    # pipeline_input_name = generate_pipeline_endpoint_name(
                    #     step_id=step.step_id, value_name=input_name
                    # )
                    pipeline_input_ref = f"{step.step_id}.{input_name}"

                    # check whether this input has an alias associated with it
                    if not self.input_aliases:
                        raise NotImplementedError()

                    if pipeline_input_ref in self.input_aliases.keys():
                        # this means we use the pipeline alias
                        pipeline_input_name = self.input_aliases[pipeline_input_ref]
                    else:
                        pipeline_input_name = generate_pipeline_endpoint_name(
                            step_id=step.step_id, value_name=input_name
                        )

                    if pipeline_input_name in existing_pipeline_input_points.keys():
                        # we already created a pipeline input with this name
                        # TODO: check whether schema fits
                        connected_pipeline_input = existing_pipeline_input_points[
                            pipeline_input_name
                        ]
                        assert connected_pipeline_input.is_constant == is_constant
                    else:
                        # we need to create the pipeline input
                        connected_pipeline_input = PipelineInputRef(
                            value_name=pipeline_input_name,
                            value_schema=schema,
                            is_constant=is_constant,
                        )

                        existing_pipeline_input_points[
                            pipeline_input_name
                        ] = connected_pipeline_input

                        data_flow_graph.add_node(
                            connected_pipeline_input, type=PipelineInputRef.__name__
                        )
                        data_flow_graph_simple.add_node(
                            connected_pipeline_input, type=PipelineInputRef.__name__
                        )
                        if is_constant:
                            constants[
                                pipeline_input_name
                            ] = step.module.get_config_value("constants")[input_name]

                        default_val = step.module.get_config_value("defaults").get(
                            input_name, None
                        )
                        if is_constant and default_val is not None:
                            raise Exception(
                                f"Module config invalid for step '{step.step_id}': both default value and constant provided for input '{input_name}'."
                            )
                        elif default_val is not None:
                            structure_defaults[pipeline_input_name] = default_val

                    step_input_point = StepInputRef(
                        step_id=step.step_id,
                        value_name=input_name,
                        value_schema=schema,
                        connected_pipeline_input=connected_pipeline_input.value_name,
                        connected_outputs=None,
                        is_constant=is_constant,
                    )
                    connected_pipeline_input.connected_inputs.append(
                        step_input_point.address
                    )
                    data_flow_graph.add_edge(connected_pipeline_input, step_input_point)
                    data_flow_graph_simple.add_edge(connected_pipeline_input, step)

                data_flow_graph.add_node(step_input_point, type=StepInputRef.__name__)

                steps_details[step.step_id]["inputs"][input_name] = step_input_point

                data_flow_graph.add_edge(step_input_point, step)

            if other_step_dependency:
                for module_id in other_step_dependency:
                    execution_graph.add_edge(module_id, step.step_id)
            else:
                execution_graph.add_edge("__root__", step.step_id)

        # calculate execution order
        path_lengths: Dict[str, int] = {}

        for step in self.steps:

            step_id = step.step_id

            paths = list(nx.all_simple_paths(execution_graph, "__root__", step_id))

            max_steps = max(paths, key=lambda x: len(x))
            path_lengths[step_id] = len(max_steps) - 1

        if path_lengths.values():
            max_length = max(path_lengths.values())

            for i in range(1, max_length + 1):
                stage: List[str] = [
                    m for m, length in path_lengths.items() if length == i
                ]
                processing_stages.append(stage)
                for _step_id in stage:
                    steps_details[_step_id]["processing_stage"] = i
                    # steps_details[_step_id]["step"].processing_stage = i

        self._constants = constants
        self._defaults = structure_defaults
        self._steps_details = {
            step_id: StepInfo(**data) for step_id, data in steps_details.items()
        }
        self._execution_graph = execution_graph
        self._data_flow_graph = data_flow_graph
        self._data_flow_graph_simple = data_flow_graph_simple
        self._processing_stages = processing_stages

        self._get_node_of_type.cache_clear()

    # def info(self) -> "PipelineStructureInfo":
    #
    #     if self._info is not None:
    #         return self._info
    #
    #     from kiara.interfaces.python_api.models.info import PipelineStructureInfo
    #
    #     self._info = PipelineStructureInfo.create_from_instance(kiara=None, instance=self)  # type: ignore
    #     return self._info

    def create_renderable(self, **config: Any) -> RenderableType:

        tree = Tree("pipeline")
        inputs = tree.add("inputs")
        for field_name, schema in self.pipeline_inputs_schema.items():
            inputs.add(f"[i]{field_name}[i] (type: {schema.type})")

        steps = tree.add("steps")
        for idx, stage in enumerate(self.processing_stages, start=1):
            stage_node = steps.add(f"stage {idx}")
            for step_id in stage:
                step_node = stage_node.add(f"step: {step_id}")
                step = self.get_step(step_id=step_id)
                if step.doc.is_set:
                    step_node.add(f"desc: {step.doc.description}")
                step_node.add(f"module: {step.manifest_src.module_type}")

        outputs = tree.add("outputs")
        for field_name, schema in self.pipeline_outputs_schema.items():
            outputs.add(f"[i]{field_name}[i] (type: {schema.type})")

        return tree

Attributes

pipeline_config: PipelineConfig = Field(description='The underlying pipeline config.') class-attribute
steps: List[PipelineStep] = Field(description='The pipeline steps ') class-attribute
input_aliases: Dict[str, str] = Field(description='The input aliases.') class-attribute
output_aliases: Dict[str, str] = Field(description='The output aliases.') class-attribute
steps_details: Mapping[str, StepInfo] property
step_ids: Iterable[str] property
constants: Mapping[str, Any] property
defaults: Mapping[str, Any] property
execution_graph: nx.DiGraph property
data_flow_graph: nx.DiGraph property
data_flow_graph_simple: nx.DiGraph property
processing_stages: List[List[str]] property
processing_stages_info: Mapping[int, PipelineStage] property
steps_input_refs: Dict[str, StepInputRef] property
steps_output_refs: Dict[str, StepOutputRef] property
pipeline_input_refs: Dict[str, PipelineInputRef] property
pipeline_output_refs: Dict[str, PipelineOutputRef] property
pipeline_inputs_schema: Mapping[str, ValueSchema] property
pipeline_outputs_schema: Mapping[str, ValueSchema] property

Functions

validate_pipeline_config(values) -> Dict[str, Any]
Source code in kiara/models/module/pipeline/structure.py
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
@root_validator(pre=True)
def validate_pipeline_config(cls, values) -> Dict[str, Any]:

    pipeline_config = values.get("pipeline_config", None)
    if not pipeline_config:
        raise ValueError("No 'pipeline_config' provided.")

    if len(values) != 1:
        raise ValueError(
            "Only 'pipeline_config' key allowed when creating a pipeline structure object."
        )

    if isinstance(pipeline_config, Mapping):
        pipeline_config = PipelineConfig(**pipeline_config)
    _config: PipelineConfig = pipeline_config
    _steps: List[PipelineStep] = list(_config.steps)

    _input_aliases: Dict[str, str] = dict(_config.input_aliases)
    _output_aliases: Dict[str, str] = dict(_config.output_aliases)

    invalid_input_aliases = [a for a in _input_aliases.values() if "." in a]
    if invalid_input_aliases:
        raise InvalidPipelineConfig(
            f"Invalid input aliases, aliases can't contain special characters: {', '.join(invalid_input_aliases)}.",
            config=values.get("pipeline_config", None),
            details=f"Invalid characters: {', '.join(invalid_input_aliases)}.",
        )
    invalid_output_aliases = [a for a in _input_aliases.values() if "." in a]
    if invalid_input_aliases:
        raise InvalidPipelineConfig(
            f"Invalid input aliases, aliases can't contain special characters: {', '.join(invalid_output_aliases)}.",
            config=values.get("pipeline_config"),
            details=f"Invalid characters: {', '.join(invalid_output_aliases)}.",
        )

    valid_input_names = set()
    for step in _steps:
        for input_name in step.module.input_names:
            valid_input_names.add(f"{step.step_id}.{input_name}")
    invalid_input_aliases = [
        a for a in _input_aliases.keys() if a not in valid_input_names
    ]
    if invalid_input_aliases:
        msg = "Invalid input reference(s)."
        details = "Invalid reference(s):\n"
        for iia in invalid_input_aliases:
            details += f" - {iia}\n"
        details += "\nMust be one of: \n"
        for name in valid_input_names:
            details += f"  - {name}\n"

        raise InvalidPipelineConfig(
            msg, config=values.get("pipeline_config", {}), details=details
        )

    valid_output_names = set()
    for step in _steps:
        for output_name in step.module.output_names:
            valid_output_names.add(f"{step.step_id}.{output_name}")
    invalid_output_names = [
        a for a in _output_aliases.keys() if a not in valid_output_names
    ]
    if invalid_output_names:

        msg = "Invalid output reference(s)."
        details = "Invalid reference(s):\n"
        for iia in invalid_output_names:
            details += f" - {iia}\n"
        details += "\nMust be one of: \n"
        for name in valid_output_names:
            details += f"  - {name}\n"

        raise InvalidPipelineConfig(msg, values.get("pipeline_config", {}), details)

    # stages = PipelineStage.from_pipeline_structure(stages=)

    # values["steps"] = {step.step_id: step for step in _steps}
    values["steps"] = _steps
    values["input_aliases"] = _input_aliases
    values["output_aliases"] = _output_aliases
    return values
get_step(step_id: str) -> PipelineStep
Source code in kiara/models/module/pipeline/structure.py
271
272
273
274
275
276
277
def get_step(self, step_id: str) -> PipelineStep:

    d = self.steps_details.get(step_id, None)
    if d is None:
        raise Exception(f"No step with id: {step_id}")

    return d.step
get_step_input_refs(step_id: str) -> Mapping[str, StepInputRef]
Source code in kiara/models/module/pipeline/structure.py
279
280
281
282
283
284
285
def get_step_input_refs(self, step_id: str) -> Mapping[str, StepInputRef]:

    d = self.steps_details.get(step_id, None)
    if d is None:
        raise Exception(f"No step with id: {step_id}")

    return d.inputs
get_step_output_refs(step_id: str) -> Mapping[str, StepOutputRef]
Source code in kiara/models/module/pipeline/structure.py
287
288
289
290
291
292
293
def get_step_output_refs(self, step_id: str) -> Mapping[str, StepOutputRef]:

    d = self.steps_details.get(step_id, None)
    if d is None:
        raise Exception(f"No step with id: {step_id}")

    return d.outputs
get_step_details(step_id: str) -> StepInfo
Source code in kiara/models/module/pipeline/structure.py
295
296
297
298
299
300
301
def get_step_details(self, step_id: str) -> StepInfo:

    d = self.steps_details.get(step_id, None)
    if d is None:
        raise Exception(f"No step with id: {step_id}")

    return d
get_pipeline_inputs_schema_for_step(step_id: str) -> Mapping[str, ValueSchema]
Source code in kiara/models/module/pipeline/structure.py
390
391
392
393
394
395
396
397
398
399
400
def get_pipeline_inputs_schema_for_step(
    self, step_id: str
) -> Mapping[str, ValueSchema]:

    result = {}
    for field, ref in self.pipeline_input_refs.items():
        for con in ref.connected_inputs:
            if con.step_id == step_id:
                result[field] = ref.value_schema
                break
    return result
get_pipeline_outputs_schema_for_step(step_id: str) -> Mapping[str, ValueSchema]
Source code in kiara/models/module/pipeline/structure.py
402
403
404
405
406
407
408
409
410
411
def get_pipeline_outputs_schema_for_step(
    self, step_id: str
) -> Mapping[str, ValueSchema]:

    result = {}
    for field, ref in self.pipeline_output_refs.items():
        if ref.connected_output.step_id == step_id:
            result[field] = ref.value_schema

    return result
get_processing_stage(step_id: str) -> int

Return the processing stage for the specified step_id.

Returns the stage nr (starting with '1').

Source code in kiara/models/module/pipeline/structure.py
413
414
415
416
417
418
419
420
421
422
423
def get_processing_stage(self, step_id: str) -> int:
    """Return the processing stage for the specified step_id.

    Returns the stage nr (starting with '1').
    """

    for index, stage in enumerate(self.processing_stages, start=1):
        if step_id in stage:
            return index

    raise Exception(f"Invalid step id '{step_id}'.")
step_is_required(step_id: str) -> bool

Check if the specified step is required, or can be omitted.

Source code in kiara/models/module/pipeline/structure.py
425
426
427
428
def step_is_required(self, step_id: str) -> bool:
    """Check if the specified step is required, or can be omitted."""

    return self.get_step_details(step_id=step_id).required
create_renderable(**config: Any) -> RenderableType
Source code in kiara/models/module/pipeline/structure.py
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
def create_renderable(self, **config: Any) -> RenderableType:

    tree = Tree("pipeline")
    inputs = tree.add("inputs")
    for field_name, schema in self.pipeline_inputs_schema.items():
        inputs.add(f"[i]{field_name}[i] (type: {schema.type})")

    steps = tree.add("steps")
    for idx, stage in enumerate(self.processing_stages, start=1):
        stage_node = steps.add(f"stage {idx}")
        for step_id in stage:
            step_node = stage_node.add(f"step: {step_id}")
            step = self.get_step(step_id=step_id)
            if step.doc.is_set:
                step_node.add(f"desc: {step.doc.description}")
            step_node.add(f"module: {step.manifest_src.module_type}")

    outputs = tree.add("outputs")
    for field_name, schema in self.pipeline_outputs_schema.items():
        outputs.add(f"[i]{field_name}[i] (type: {schema.type})")

    return tree

Functions

generate_pipeline_endpoint_name(step_id: str, value_name: str)

Source code in kiara/models/module/pipeline/structure.py
29
30
31
def generate_pipeline_endpoint_name(step_id: str, value_name: str):

    return f"{step_id}__{value_name}"