tokens
Attributes¶
log = structlog.getLogger()
module-attribute
¶
Classes¶
TokenizeTextConfig
¶
Bases: KiaraModuleConfig
Source code in kiara_plugin/language_processing/modules/tokens.py
32 33 34 35 36 37 38 39 40 |
|
Attributes¶
filter_non_alpha: bool = Field(description='Whether to filter out non alpha tokens.', default=True)
class-attribute
¶
min_token_length: int = Field(description='The minimum token length.', default=3)
class-attribute
¶
to_lowercase: bool = Field(description='Whether to lowercase the tokens.', default=True)
class-attribute
¶
TokenizeTextModule
¶
Bases: KiaraModule
Tokenize a string.
Source code in kiara_plugin/language_processing/modules/tokens.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
Attributes¶
_config_cls = TokenizeTextConfig
class-attribute
¶
Functions¶
create_inputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
49 50 51 52 53 54 55 |
|
create_outputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
57 58 59 60 61 62 63 64 65 66 67 |
|
process(inputs: ValueMap, outputs: ValueMap) -> None
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|
TokenizeTextArrayeModule
¶
Bases: KiaraModule
Split sentences into words or words into characters. In other words, this operation establishes the word boundaries (i.e., tokens) a very helpful way of finding patterns. It is also the typical step prior to stemming and lemmatization
Source code in kiara_plugin/language_processing/modules/tokens.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
Attributes¶
KIARA_METADATA = {'tags': ['tokenize', 'tokens']}
class-attribute
¶
Functions¶
create_inputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
create_outputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
123 124 125 126 127 128 129 130 131 132 |
|
process(inputs: ValueMap, outputs: ValueMap)
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
|
AssembleStopwordsModule
¶
Bases: KiaraModule
Create a list of stopwords from one or multiple sources.
This will download nltk stopwords if necessary, and merge all input lists into a single, sorted list without duplicates.
Source code in kiara_plugin/language_processing/modules/tokens.py
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
Functions¶
create_inputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
|
create_outputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
188 189 190 191 192 193 194 195 196 197 |
|
process(inputs: ValueMap, outputs: ValueMap)
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
|
RemoveStopwordsModule
¶
Bases: KiaraModule
Remove stopwords from an array of token-lists.
Source code in kiara_plugin/language_processing/modules/tokens.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
Functions¶
create_inputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
|
create_outputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
257 258 259 260 261 262 263 264 265 266 267 |
|
process(inputs: ValueMap, outputs: ValueMap) -> None
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
PreprocessModule
¶
Bases: KiaraModule
Preprocess lists of tokens, incl. lowercasing, remove special characers, etc.
Lowercasing: Lowercase the words. This operation is a double-edged sword. It can be effective at yielding potentially better results in the case of relatively small datasets or datatsets with a high percentage of OCR mistakes. For instance, if lowercasing is not performed, the algorithm will treat USA, Usa, usa, UsA, uSA, etc. as distinct tokens, even though they may all refer to the same entity. On the other hand, if the dataset does not contain such OCR mistakes, then it may become difficult to distinguish between homonyms and make interpreting the topics much harder.
Removing stopwords and words with less than three characters: Remove low information words. These are typically words such as articles, pronouns, prepositions, conjunctions, etc. which are not semantically salient. There are numerous stopword lists available for many, though not all, languages which can be easily adapted to the individual researcher's needs. Removing words with less than three characters may additionally remove many OCR mistakes. Both these operations have the dual advantage of yielding more reliable results while reducing the size of the dataset, thus in turn reducing the required processing power. This step can therefore hardly be considered optional in TM.
Noise removal: Remove elements such as punctuation marks, special characters, numbers, html formatting, etc. This operation is again concerned with removing elements that may not be relevant to the text analysis and in fact interfere with it. Depending on the dataset and research question, this operation can become essential.
Source code in kiara_plugin/language_processing/modules/tokens.py
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
|
Attributes¶
KIARA_METADATA = {'tags': ['tokens', 'preprocess']}
class-attribute
¶
Functions¶
create_inputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
|
create_outputs_schema() -> ValueSetSchema
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
371 372 373 374 375 376 377 378 379 380 |
|
process(inputs: ValueMap, outputs: ValueMap)
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
|
Functions¶
get_stopwords()
¶
Source code in kiara_plugin/language_processing/modules/tokens.py
17 18 19 20 21 22 23 24 25 26 27 28 29 |
|