Skip to content

models

This module contains the metadata (and other) models that are used in the kiara_plugin.network_analysis package.

Those models are convenience wrappers that make it easier for kiara to find, create, manage and version metadata -- but also other type of models -- that is attached to data, as well as kiara modules.

Metadata models must be a sub-class of [kiara.metadata.MetadataModel][]. Other models usually sub-class a pydantic BaseModel or implement custom base classes.

Attributes

NETWORKX_GRAPH_TYPE = TypeVar('NETWORKX_GRAPH_TYPE', bound='nx.Graph') module-attribute

RUSTWORKX_GRAPH_TYPE = TypeVar('RUSTWORKX_GRAPH_TYPE', 'rx.PyGraph', 'rx.PyDiGraph') module-attribute

Classes

NodesCallback

Bases: Protocol

Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
72
73
74
class NodesCallback(Protocol):
    def __call__(self, _node_id: int, **kwargs) -> None:
        ...

EdgesCallback

Bases: Protocol

Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
77
78
79
class EdgesCallback(Protocol):
    def __call__(self, _source: int, _target: int, **kwargs) -> None:
        ...

NetworkData

Bases: KiaraTables

A helper class to access and query network datasets.

This class provides different ways to access the underlying network data, most notably via sql and as networkx Graph object.

Internally, network data is stored as 2 Arrow tables with the edges stored in a table called 'edges' and the nodes in a table called 'nodes'. The edges table must have (at least) the following columns: '_source', '_target'. The nodes table must have (at least) the following columns: '_id' (integer), '_label' (string).

By convention, kiara will add columns prefixed with an underscore if the values in it have internal 'meaning', normal/original attributes are stored in columns without that prefix.

Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
class NetworkData(KiaraTables):
    """A helper class to access and query network datasets.

    This class provides different ways to access the underlying network data, most notably via sql and as networkx Graph object.

    Internally, network data is stored as 2 Arrow tables with the edges stored in a table called 'edges' and the nodes in a table called 'nodes'. The edges table must have (at least) the following columns: '_source', '_target'. The nodes table must have (at least) the following columns: '_id' (integer), '_label' (string).

    By convention, kiara will add columns prefixed with an underscore if the values in it have internal 'meaning', normal/original attributes are stored in columns without that prefix.
    """

    _kiara_model_id = "instance.network_data"

    @classmethod
    def create_network_data(
        cls,
        nodes_table: "pa.Table",
        edges_table: "pa.Table",
        augment_tables: bool = True,
        nodes_column_metadata: Union[Dict[str, Dict[str, KiaraModel]], None] = None,
        edges_column_metadata: Union[Dict[str, Dict[str, KiaraModel]], None] = None,
    ) -> "NetworkData":
        """Create a `NetworkData` instance from two Arrow tables.

        This method requires the nodes to have an "_id' column (int) as well as a '_label' one (utf8).
        The edges table needs at least a '_source' (int) and '_target' (int) column.

        This method will augment both tables with additional columns that are required for the internal representation (weights, degrees).
        """

        from kiara_plugin.network_analysis.models.metadata import (
            EDGE_COUNT_DUP_DIRECTED_COLUMN_METADATA,
            EDGE_COUNT_DUP_UNDIRECTED_COLUMN_METADATA,
            EDGE_ID_COLUMN_METADATA,
            EDGE_IDX_DUP_DIRECTED_COLUMN_METADATA,
            EDGE_IDX_DUP_UNDIRECTED_COLUMN_METADATA,
            EDGE_SOURCE_COLUMN_METADATA,
            EDGE_TARGET_COLUMN_METADATA,
            NODE_COUND_EDGES_MULTI_COLUMN_METADATA,
            NODE_COUNT_EDGES_COLUMN_METADATA,
            NODE_COUNT_IN_EDGES_COLUMN_METADATA,
            NODE_COUNT_IN_EDGES_MULTI_COLUMN_METADATA,
            NODE_COUNT_OUT_EDGES_COLUMN_METADATA,
            NODE_COUNT_OUT_EDGES_MULTI_COLUMN_METADATA,
            NODE_ID_COLUMN_METADATA,
            NODE_LABEL_COLUMN_METADATA,
        )

        if augment_tables:
            edges_table = augment_edges_table_with_id_and_weights(edges_table)
            nodes_table = augment_nodes_table_with_connection_counts(
                nodes_table, edges_table
            )

        network_data = cls.create_tables(
            {NODES_TABLE_NAME: nodes_table, EDGES_TABLE_NAME: edges_table}
        )

        # set default column metadata
        network_data.edges.set_column_metadata(
            EDGE_ID_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            EDGE_ID_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.edges.set_column_metadata(
            SOURCE_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            EDGE_SOURCE_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.edges.set_column_metadata(
            TARGET_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            EDGE_TARGET_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.edges.set_column_metadata(
            COUNT_DIRECTED_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            EDGE_COUNT_DUP_DIRECTED_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.edges.set_column_metadata(
            COUNT_IDX_DIRECTED_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            EDGE_IDX_DUP_DIRECTED_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.edges.set_column_metadata(
            COUNT_UNDIRECTED_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            EDGE_COUNT_DUP_UNDIRECTED_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.edges.set_column_metadata(
            COUNT_IDX_UNDIRECTED_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            EDGE_IDX_DUP_UNDIRECTED_COLUMN_METADATA,
            overwrite_existing=False,
        )

        network_data.nodes.set_column_metadata(
            NODE_ID_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            NODE_ID_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.nodes.set_column_metadata(
            LABEL_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            NODE_LABEL_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.nodes.set_column_metadata(
            CONNECTIONS_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            NODE_COUNT_EDGES_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.nodes.set_column_metadata(
            CONNECTIONS_MULTI_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            NODE_COUND_EDGES_MULTI_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.nodes.set_column_metadata(
            IN_DIRECTED_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            NODE_COUNT_IN_EDGES_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.nodes.set_column_metadata(
            IN_DIRECTED_MULTI_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            NODE_COUNT_IN_EDGES_MULTI_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.nodes.set_column_metadata(
            OUT_DIRECTED_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            NODE_COUNT_OUT_EDGES_COLUMN_METADATA,
            overwrite_existing=False,
        )
        network_data.nodes.set_column_metadata(
            OUT_DIRECTED_MULTI_COLUMN_NAME,
            ATTRIBUTE_PROPERTY_KEY,
            NODE_COUNT_OUT_EDGES_MULTI_COLUMN_METADATA,
            overwrite_existing=False,
        )

        if nodes_column_metadata is not None:
            for col_name, col_meta in nodes_column_metadata.items():
                for prop_name, prop_value in col_meta.items():
                    network_data.nodes.set_column_metadata(
                        col_name, prop_name, prop_value, overwrite_existing=True
                    )
        if edges_column_metadata is not None:
            for col_name, col_meta in edges_column_metadata.items():
                for prop_name, prop_value in col_meta.items():
                    network_data.edges.set_column_metadata(
                        col_name, prop_name, prop_value, overwrite_existing=True
                    )

        return network_data

    @classmethod
    def from_filtered_nodes(
        cls, network_data: "NetworkData", nodes_list: List[int]
    ) -> "NetworkData":

        import duckdb
        import polars as pl

        node_columns = [NODE_ID_COLUMN_NAME, LABEL_COLUMN_NAME]
        for column_name, metadata in network_data.nodes.column_metadata.items():
            attr_prop: Union[None, NetworkNodeAttributeMetadata] = metadata.get(
                ATTRIBUTE_PROPERTY_KEY, None
            )
            if attr_prop is None or not attr_prop.computed_attribute:
                node_columns.append(column_name)

        node_list_str = ", ".join([str(n) for n in nodes_list])

        nodes_table = network_data.nodes.arrow_table  # noqa
        nodes_query = f"SELECT {', '.join(node_columns)} FROM nodes_table n WHERE n.{NODE_ID_COLUMN_NAME} IN ({node_list_str})"

        nodes_result = duckdb.sql(nodes_query).pl()

        edges_table = network_data.edges.arrow_table  # noqa
        edge_columns = [SOURCE_COLUMN_NAME, TARGET_COLUMN_NAME]
        for column_name, metadata in network_data.edges.column_metadata.items():
            attr_prop = metadata.get(ATTRIBUTE_PROPERTY_KEY, None)
            if attr_prop is None or not attr_prop.computed_attribute:
                edge_columns.append(column_name)

        edges_query = f"SELECT {', '.join(edge_columns)} FROM edges_table WHERE {SOURCE_COLUMN_NAME} IN ({node_list_str}) OR {TARGET_COLUMN_NAME} IN ({node_list_str})"

        edges_result = duckdb.sql(edges_query).pl()

        nodes_idx_colum = range(len(nodes_result))
        old_idx_column = nodes_result[NODE_ID_COLUMN_NAME]

        repl_map = dict(zip(old_idx_column.to_list(), nodes_idx_colum))
        nodes_result = nodes_result.with_columns(
            pl.col(NODE_ID_COLUMN_NAME).map_dict(repl_map)
        )

        edges_result = edges_result.with_columns(
            pl.col(SOURCE_COLUMN_NAME).map_dict(repl_map),
            pl.col(TARGET_COLUMN_NAME).map_dict(repl_map),
        )

        filtered = NetworkData.create_network_data(
            nodes_table=nodes_result, edges_table=edges_result
        )
        return filtered

    @classmethod
    def create_from_networkx_graph(
        cls,
        graph: "nx.Graph",
        label_attr_name: Union[str, None] = None,
        ignore_node_attributes: Union[Iterable[str], None] = None,
    ) -> "NetworkData":
        """Create a `NetworkData` instance from a networkx Graph object."""

        # TODO: should we also index nodes/edges attributes?

        nodes_table, node_id_map = extract_networkx_nodes_as_table(
            graph=graph,
            label_attr_name=label_attr_name,
            ignore_attributes=ignore_node_attributes,
        )

        edges_table = extract_networkx_edges_as_table(graph, node_id_map)

        network_data = NetworkData.create_network_data(
            nodes_table=nodes_table, edges_table=edges_table
        )

        return network_data

    @property
    def edges(self) -> "KiaraTable":
        """Return the edges table."""

        return self.tables[EDGES_TABLE_NAME]

    @property
    def nodes(self) -> "KiaraTable":
        """Return the nodes table."""

        return self.tables[NODES_TABLE_NAME]

    @property
    def num_nodes(self):
        """Return the number of nodes in the network data."""

        return self.nodes.num_rows

    @property
    def num_edges(self):
        """Return the number of edges in the network data."""

        return self.edges.num_rows

    def query_edges(
        self, sql_query: str, relation_name: str = EDGES_TABLE_NAME
    ) -> "pa.Table":
        """Query the edges table using SQL.

        The table name to use in the query defaults to 'edges', but can be changed using the 'relation_name' argument.
        """

        import duckdb

        con = duckdb.connect()
        edges = self.edges.arrow_table  # noqak
        if relation_name != EDGES_TABLE_NAME:
            sql_query = sql_query.replace(relation_name, EDGES_TABLE_NAME)

        result = con.execute(sql_query)
        return result.arrow()

    def query_nodes(
        self, sql_query: str, relation_name: str = NODES_TABLE_NAME
    ) -> "pa.Table":
        """Query the nodes table using SQL.

        The table name to use in the query defaults to 'nodes', but can be changed using the 'relation_name' argument.
        """

        import duckdb

        con = duckdb.connect()
        nodes = self.nodes.arrow_table  # noqa
        if relation_name != NODES_TABLE_NAME:
            sql_query = sql_query.replace(relation_name, NODES_TABLE_NAME)

        result = con.execute(sql_query)
        return result.arrow()

    def _calculate_node_attributes(
        self, incl_node_attributes: Union[bool, str, Iterable[str]]
    ) -> List[str]:
        """Calculate the node attributes that should be included in the output."""

        if incl_node_attributes is False:
            node_attr_names: List[str] = [NODE_ID_COLUMN_NAME, LABEL_COLUMN_NAME]
        else:
            all_node_attr_names = self.nodes.column_names
            if incl_node_attributes is True:
                node_attr_names = [NODE_ID_COLUMN_NAME]
                node_attr_names.extend((x for x in all_node_attr_names if x != NODE_ID_COLUMN_NAME))  # type: ignore
            elif isinstance(incl_node_attributes, str):
                if incl_node_attributes not in all_node_attr_names:
                    raise KiaraException(
                        f"Can't include node attribute {incl_node_attributes}: not part of the available attributes ({', '.join(all_node_attr_names)})."
                    )
                node_attr_names = [NODE_ID_COLUMN_NAME, incl_node_attributes]
            else:
                node_attr_names = [NODE_ID_COLUMN_NAME]
                for attr_name in incl_node_attributes:
                    if incl_node_attributes not in all_node_attr_names:
                        raise KiaraException(
                            f"Can't include node attribute {incl_node_attributes}: not part of the available attributes ({', '.join(all_node_attr_names)})."
                        )
                    node_attr_names.append(attr_name)  # type: ignore

        return node_attr_names

    def _calculate_edge_attributes(
        self, incl_edge_attributes: Union[bool, str, Iterable[str]]
    ) -> List[str]:
        """Calculate the edge attributes that should be included in the output."""

        if incl_edge_attributes is False:
            edge_attr_names: List[str] = [SOURCE_COLUMN_NAME, TARGET_COLUMN_NAME]
        else:
            all_edge_attr_names = self.edges.column_names
            if incl_edge_attributes is True:
                edge_attr_names = [SOURCE_COLUMN_NAME, TARGET_COLUMN_NAME]
                edge_attr_names.extend(
                    (
                        x
                        for x in all_edge_attr_names
                        if x not in (SOURCE_COLUMN_NAME, TARGET_COLUMN_NAME)
                    )
                )  # type: ignore
            elif isinstance(incl_edge_attributes, str):
                if incl_edge_attributes not in all_edge_attr_names:
                    raise KiaraException(
                        f"Can't include edge attribute {incl_edge_attributes}: not part of the available attributes ({', '.join(all_edge_attr_names)})."
                    )
                edge_attr_names = [
                    SOURCE_COLUMN_NAME,
                    TARGET_COLUMN_NAME,
                    incl_edge_attributes,
                ]
            else:
                edge_attr_names = [SOURCE_COLUMN_NAME, TARGET_COLUMN_NAME]
                for attr_name in incl_edge_attributes:
                    if incl_edge_attributes not in all_edge_attr_names:
                        raise KiaraException(
                            f"Can't include edge attribute {incl_edge_attributes}: not part of the available attributes ({', '.join(all_edge_attr_names)})."
                        )
                    edge_attr_names.append(attr_name)  # type: ignore

        return edge_attr_names

    def retrieve_graph_data(
        self,
        nodes_callback: Union[NodesCallback, None] = None,
        edges_callback: Union[EdgesCallback, None] = None,
        incl_node_attributes: Union[bool, str, Iterable[str]] = False,
        incl_edge_attributes: Union[bool, str, Iterable[str]] = False,
        omit_self_loops: bool = False,
    ):
        """Retrieve graph data from the sqlite database, and call the specified callbacks for each node and edge.

        First the nodes will be processed, then the edges, if that does not suit your needs you can just use this method twice, and set the callback you don't need to None.

        The nodes_callback will be called with the following arguments:
            - node_id: the id of the node (int)
            - if False: nothing else
            - if True: all node attributes, in the order they are defined in the table schema
            - if str: the value of the specified node attribute
            - if Iterable[str]: the values of the specified node attributes, in the order they are specified

        The edges_callback will be called with the following aruments:
            - source_id: the id of the source node (int)
            - target_id: the id of the target node (int)
            - if False: nothing else
            - if True: all edge attributes, in the order they are defined in the table schema
            - if str: the value of the specified edge attribute
            - if Iterable[str]: the values of the specified edge attributes, in the order they are specified

        """

        if nodes_callback is not None:
            node_attr_names = self._calculate_node_attributes(incl_node_attributes)

            nodes_df = self.nodes.to_polars_dataframe()
            for row in nodes_df.select(*node_attr_names).rows(named=True):
                nodes_callback(**row)  # type: ignore

        if edges_callback is not None:
            edge_attr_names = self._calculate_edge_attributes(incl_edge_attributes)

            edges_df = self.edges.to_polars_dataframe()
            for row in edges_df.select(*edge_attr_names).rows(named=True):
                if (
                    omit_self_loops
                    and row[SOURCE_COLUMN_NAME] == row[TARGET_COLUMN_NAME]
                ):
                    continue
                edges_callback(**row)  # type: ignore

    def as_networkx_graph(
        self,
        graph_type: Type[NETWORKX_GRAPH_TYPE],
        incl_node_attributes: Union[bool, str, Iterable[str]] = False,
        incl_edge_attributes: Union[bool, str, Iterable[str]] = False,
        omit_self_loops: bool = False,
    ) -> NETWORKX_GRAPH_TYPE:
        """Return the network data as a networkx graph object.

        Arguments:
            graph_type: the networkx Graph class to use
            incl_node_attributes: if True, all node attributes are included in the graph, if False, none are, otherwise the specified attributes are included
            incl_edge_attributes: if True, all edge attributes are included in the graph, if False, none are, otherwise the specified attributes are included
            omit_self_loops: if False, self-loops are included in the graph, otherwise they are not added to the resulting graph (nodes that are only connected to themselves are still included)

        """

        graph = graph_type()

        def add_node(_node_id: int, **attrs):
            graph.add_node(_node_id, **attrs)

        def add_edge(_source: int, _target: int, **attrs):
            graph.add_edge(_source, _target, **attrs)

        self.retrieve_graph_data(
            nodes_callback=add_node,
            edges_callback=add_edge,
            incl_node_attributes=incl_node_attributes,
            incl_edge_attributes=incl_edge_attributes,
            omit_self_loops=omit_self_loops,
        )

        return graph

    def as_rustworkx_graph(
        self,
        graph_type: Type[RUSTWORKX_GRAPH_TYPE],
        multigraph: bool = False,
        incl_node_attributes: Union[bool, str, Iterable[str]] = False,
        incl_edge_attributes: Union[bool, str, Iterable[str]] = False,
        omit_self_loops: bool = False,
        attach_node_id_map: bool = False,
    ) -> RUSTWORKX_GRAPH_TYPE:
        """
        Return the network data as a rustworkx graph object.

        Be aware that the node ids in the rustworks graph might not match up with the values of the _node_id column of
        the original network_data. The original _node_id will be set as an attribute (`_node_id`) on the nodes.

        Arguments:
            graph_type: the rustworkx Graph class to use
            multigraph: if True, a Multi(Di)Graph is returned, otherwise a normal (Di)Graph
            incl_node_attributes: if True, all node attributes are included in the graph, if False, none are, otherwise the specified attributes are included
            incl_edge_attributes: if True, all edge attributes are included in the graph, if False, none are, otherwise the specified attributes are included
            omit_self_loops: if False, self-loops are included in the graph, otherwise they are not added to the resulting graph (nodes that are only connected to themselves are still included)
            attach_node_id_map: if True, add the dict describing how the graph node ids (key) are mapped to the original node id of the network data, under the 'node_id_map' key in the graph's attributes
        """

        from bidict import bidict

        graph = graph_type(multigraph=multigraph)

        # rustworkx uses 0-based integer indexes, so we don't neeed to look up the node ids (unless we want to
        # include node attributes)

        self._calculate_node_attributes(incl_node_attributes)[1:]
        self._calculate_edge_attributes(incl_edge_attributes)[2:]

        # we can use a 'global' dict here because we know the nodes are processed before the edges
        node_map: bidict = bidict()

        def add_node(_node_id: int, **attrs):
            data = {NODE_ID_COLUMN_NAME: _node_id}
            data.update(attrs)

            graph_node_id = graph.add_node(data)

            node_map[graph_node_id] = _node_id
            # if not _node_id == graph_node_id:
            #     raise Exception("Internal error: node ids don't match")

        def add_edge(_source: int, _target: int, **attrs):

            source = node_map[_source]
            target = node_map[_target]
            if not attrs:
                graph.add_edge(source, target, None)
            else:
                graph.add_edge(source, target, attrs)

        self.retrieve_graph_data(
            nodes_callback=add_node,
            edges_callback=add_edge,
            incl_node_attributes=incl_node_attributes,
            incl_edge_attributes=incl_edge_attributes,
            omit_self_loops=omit_self_loops,
        )

        if attach_node_id_map:
            graph.attrs = {"node_id_map": node_map}

        return graph

Attributes

edges: KiaraTable property

Return the edges table.

nodes: KiaraTable property

Return the nodes table.

num_nodes property

Return the number of nodes in the network data.

num_edges property

Return the number of edges in the network data.

Functions

create_network_data(nodes_table: pa.Table, edges_table: pa.Table, augment_tables: bool = True, nodes_column_metadata: Union[Dict[str, Dict[str, KiaraModel]], None] = None, edges_column_metadata: Union[Dict[str, Dict[str, KiaraModel]], None] = None) -> NetworkData classmethod

Create a NetworkData instance from two Arrow tables.

This method requires the nodes to have an "_id' column (int) as well as a '_label' one (utf8). The edges table needs at least a '_source' (int) and '_target' (int) column.

This method will augment both tables with additional columns that are required for the internal representation (weights, degrees).

Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
@classmethod
def create_network_data(
    cls,
    nodes_table: "pa.Table",
    edges_table: "pa.Table",
    augment_tables: bool = True,
    nodes_column_metadata: Union[Dict[str, Dict[str, KiaraModel]], None] = None,
    edges_column_metadata: Union[Dict[str, Dict[str, KiaraModel]], None] = None,
) -> "NetworkData":
    """Create a `NetworkData` instance from two Arrow tables.

    This method requires the nodes to have an "_id' column (int) as well as a '_label' one (utf8).
    The edges table needs at least a '_source' (int) and '_target' (int) column.

    This method will augment both tables with additional columns that are required for the internal representation (weights, degrees).
    """

    from kiara_plugin.network_analysis.models.metadata import (
        EDGE_COUNT_DUP_DIRECTED_COLUMN_METADATA,
        EDGE_COUNT_DUP_UNDIRECTED_COLUMN_METADATA,
        EDGE_ID_COLUMN_METADATA,
        EDGE_IDX_DUP_DIRECTED_COLUMN_METADATA,
        EDGE_IDX_DUP_UNDIRECTED_COLUMN_METADATA,
        EDGE_SOURCE_COLUMN_METADATA,
        EDGE_TARGET_COLUMN_METADATA,
        NODE_COUND_EDGES_MULTI_COLUMN_METADATA,
        NODE_COUNT_EDGES_COLUMN_METADATA,
        NODE_COUNT_IN_EDGES_COLUMN_METADATA,
        NODE_COUNT_IN_EDGES_MULTI_COLUMN_METADATA,
        NODE_COUNT_OUT_EDGES_COLUMN_METADATA,
        NODE_COUNT_OUT_EDGES_MULTI_COLUMN_METADATA,
        NODE_ID_COLUMN_METADATA,
        NODE_LABEL_COLUMN_METADATA,
    )

    if augment_tables:
        edges_table = augment_edges_table_with_id_and_weights(edges_table)
        nodes_table = augment_nodes_table_with_connection_counts(
            nodes_table, edges_table
        )

    network_data = cls.create_tables(
        {NODES_TABLE_NAME: nodes_table, EDGES_TABLE_NAME: edges_table}
    )

    # set default column metadata
    network_data.edges.set_column_metadata(
        EDGE_ID_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        EDGE_ID_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.edges.set_column_metadata(
        SOURCE_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        EDGE_SOURCE_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.edges.set_column_metadata(
        TARGET_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        EDGE_TARGET_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.edges.set_column_metadata(
        COUNT_DIRECTED_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        EDGE_COUNT_DUP_DIRECTED_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.edges.set_column_metadata(
        COUNT_IDX_DIRECTED_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        EDGE_IDX_DUP_DIRECTED_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.edges.set_column_metadata(
        COUNT_UNDIRECTED_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        EDGE_COUNT_DUP_UNDIRECTED_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.edges.set_column_metadata(
        COUNT_IDX_UNDIRECTED_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        EDGE_IDX_DUP_UNDIRECTED_COLUMN_METADATA,
        overwrite_existing=False,
    )

    network_data.nodes.set_column_metadata(
        NODE_ID_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        NODE_ID_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.nodes.set_column_metadata(
        LABEL_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        NODE_LABEL_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.nodes.set_column_metadata(
        CONNECTIONS_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        NODE_COUNT_EDGES_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.nodes.set_column_metadata(
        CONNECTIONS_MULTI_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        NODE_COUND_EDGES_MULTI_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.nodes.set_column_metadata(
        IN_DIRECTED_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        NODE_COUNT_IN_EDGES_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.nodes.set_column_metadata(
        IN_DIRECTED_MULTI_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        NODE_COUNT_IN_EDGES_MULTI_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.nodes.set_column_metadata(
        OUT_DIRECTED_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        NODE_COUNT_OUT_EDGES_COLUMN_METADATA,
        overwrite_existing=False,
    )
    network_data.nodes.set_column_metadata(
        OUT_DIRECTED_MULTI_COLUMN_NAME,
        ATTRIBUTE_PROPERTY_KEY,
        NODE_COUNT_OUT_EDGES_MULTI_COLUMN_METADATA,
        overwrite_existing=False,
    )

    if nodes_column_metadata is not None:
        for col_name, col_meta in nodes_column_metadata.items():
            for prop_name, prop_value in col_meta.items():
                network_data.nodes.set_column_metadata(
                    col_name, prop_name, prop_value, overwrite_existing=True
                )
    if edges_column_metadata is not None:
        for col_name, col_meta in edges_column_metadata.items():
            for prop_name, prop_value in col_meta.items():
                network_data.edges.set_column_metadata(
                    col_name, prop_name, prop_value, overwrite_existing=True
                )

    return network_data
from_filtered_nodes(network_data: NetworkData, nodes_list: List[int]) -> NetworkData classmethod
Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
@classmethod
def from_filtered_nodes(
    cls, network_data: "NetworkData", nodes_list: List[int]
) -> "NetworkData":

    import duckdb
    import polars as pl

    node_columns = [NODE_ID_COLUMN_NAME, LABEL_COLUMN_NAME]
    for column_name, metadata in network_data.nodes.column_metadata.items():
        attr_prop: Union[None, NetworkNodeAttributeMetadata] = metadata.get(
            ATTRIBUTE_PROPERTY_KEY, None
        )
        if attr_prop is None or not attr_prop.computed_attribute:
            node_columns.append(column_name)

    node_list_str = ", ".join([str(n) for n in nodes_list])

    nodes_table = network_data.nodes.arrow_table  # noqa
    nodes_query = f"SELECT {', '.join(node_columns)} FROM nodes_table n WHERE n.{NODE_ID_COLUMN_NAME} IN ({node_list_str})"

    nodes_result = duckdb.sql(nodes_query).pl()

    edges_table = network_data.edges.arrow_table  # noqa
    edge_columns = [SOURCE_COLUMN_NAME, TARGET_COLUMN_NAME]
    for column_name, metadata in network_data.edges.column_metadata.items():
        attr_prop = metadata.get(ATTRIBUTE_PROPERTY_KEY, None)
        if attr_prop is None or not attr_prop.computed_attribute:
            edge_columns.append(column_name)

    edges_query = f"SELECT {', '.join(edge_columns)} FROM edges_table WHERE {SOURCE_COLUMN_NAME} IN ({node_list_str}) OR {TARGET_COLUMN_NAME} IN ({node_list_str})"

    edges_result = duckdb.sql(edges_query).pl()

    nodes_idx_colum = range(len(nodes_result))
    old_idx_column = nodes_result[NODE_ID_COLUMN_NAME]

    repl_map = dict(zip(old_idx_column.to_list(), nodes_idx_colum))
    nodes_result = nodes_result.with_columns(
        pl.col(NODE_ID_COLUMN_NAME).map_dict(repl_map)
    )

    edges_result = edges_result.with_columns(
        pl.col(SOURCE_COLUMN_NAME).map_dict(repl_map),
        pl.col(TARGET_COLUMN_NAME).map_dict(repl_map),
    )

    filtered = NetworkData.create_network_data(
        nodes_table=nodes_result, edges_table=edges_result
    )
    return filtered
create_from_networkx_graph(graph: nx.Graph, label_attr_name: Union[str, None] = None, ignore_node_attributes: Union[Iterable[str], None] = None) -> NetworkData classmethod

Create a NetworkData instance from a networkx Graph object.

Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
@classmethod
def create_from_networkx_graph(
    cls,
    graph: "nx.Graph",
    label_attr_name: Union[str, None] = None,
    ignore_node_attributes: Union[Iterable[str], None] = None,
) -> "NetworkData":
    """Create a `NetworkData` instance from a networkx Graph object."""

    # TODO: should we also index nodes/edges attributes?

    nodes_table, node_id_map = extract_networkx_nodes_as_table(
        graph=graph,
        label_attr_name=label_attr_name,
        ignore_attributes=ignore_node_attributes,
    )

    edges_table = extract_networkx_edges_as_table(graph, node_id_map)

    network_data = NetworkData.create_network_data(
        nodes_table=nodes_table, edges_table=edges_table
    )

    return network_data
query_edges(sql_query: str, relation_name: str = EDGES_TABLE_NAME) -> pa.Table

Query the edges table using SQL.

The table name to use in the query defaults to 'edges', but can be changed using the 'relation_name' argument.

Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
def query_edges(
    self, sql_query: str, relation_name: str = EDGES_TABLE_NAME
) -> "pa.Table":
    """Query the edges table using SQL.

    The table name to use in the query defaults to 'edges', but can be changed using the 'relation_name' argument.
    """

    import duckdb

    con = duckdb.connect()
    edges = self.edges.arrow_table  # noqak
    if relation_name != EDGES_TABLE_NAME:
        sql_query = sql_query.replace(relation_name, EDGES_TABLE_NAME)

    result = con.execute(sql_query)
    return result.arrow()
query_nodes(sql_query: str, relation_name: str = NODES_TABLE_NAME) -> pa.Table

Query the nodes table using SQL.

The table name to use in the query defaults to 'nodes', but can be changed using the 'relation_name' argument.

Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
def query_nodes(
    self, sql_query: str, relation_name: str = NODES_TABLE_NAME
) -> "pa.Table":
    """Query the nodes table using SQL.

    The table name to use in the query defaults to 'nodes', but can be changed using the 'relation_name' argument.
    """

    import duckdb

    con = duckdb.connect()
    nodes = self.nodes.arrow_table  # noqa
    if relation_name != NODES_TABLE_NAME:
        sql_query = sql_query.replace(relation_name, NODES_TABLE_NAME)

    result = con.execute(sql_query)
    return result.arrow()
retrieve_graph_data(nodes_callback: Union[NodesCallback, None] = None, edges_callback: Union[EdgesCallback, None] = None, incl_node_attributes: Union[bool, str, Iterable[str]] = False, incl_edge_attributes: Union[bool, str, Iterable[str]] = False, omit_self_loops: bool = False)

Retrieve graph data from the sqlite database, and call the specified callbacks for each node and edge.

First the nodes will be processed, then the edges, if that does not suit your needs you can just use this method twice, and set the callback you don't need to None.

The nodes_callback will be called with the following arguments
  • node_id: the id of the node (int)
  • if False: nothing else
  • if True: all node attributes, in the order they are defined in the table schema
  • if str: the value of the specified node attribute
  • if Iterable[str]: the values of the specified node attributes, in the order they are specified
The edges_callback will be called with the following aruments
  • source_id: the id of the source node (int)
  • target_id: the id of the target node (int)
  • if False: nothing else
  • if True: all edge attributes, in the order they are defined in the table schema
  • if str: the value of the specified edge attribute
  • if Iterable[str]: the values of the specified edge attributes, in the order they are specified
Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
def retrieve_graph_data(
    self,
    nodes_callback: Union[NodesCallback, None] = None,
    edges_callback: Union[EdgesCallback, None] = None,
    incl_node_attributes: Union[bool, str, Iterable[str]] = False,
    incl_edge_attributes: Union[bool, str, Iterable[str]] = False,
    omit_self_loops: bool = False,
):
    """Retrieve graph data from the sqlite database, and call the specified callbacks for each node and edge.

    First the nodes will be processed, then the edges, if that does not suit your needs you can just use this method twice, and set the callback you don't need to None.

    The nodes_callback will be called with the following arguments:
        - node_id: the id of the node (int)
        - if False: nothing else
        - if True: all node attributes, in the order they are defined in the table schema
        - if str: the value of the specified node attribute
        - if Iterable[str]: the values of the specified node attributes, in the order they are specified

    The edges_callback will be called with the following aruments:
        - source_id: the id of the source node (int)
        - target_id: the id of the target node (int)
        - if False: nothing else
        - if True: all edge attributes, in the order they are defined in the table schema
        - if str: the value of the specified edge attribute
        - if Iterable[str]: the values of the specified edge attributes, in the order they are specified

    """

    if nodes_callback is not None:
        node_attr_names = self._calculate_node_attributes(incl_node_attributes)

        nodes_df = self.nodes.to_polars_dataframe()
        for row in nodes_df.select(*node_attr_names).rows(named=True):
            nodes_callback(**row)  # type: ignore

    if edges_callback is not None:
        edge_attr_names = self._calculate_edge_attributes(incl_edge_attributes)

        edges_df = self.edges.to_polars_dataframe()
        for row in edges_df.select(*edge_attr_names).rows(named=True):
            if (
                omit_self_loops
                and row[SOURCE_COLUMN_NAME] == row[TARGET_COLUMN_NAME]
            ):
                continue
            edges_callback(**row)  # type: ignore
as_networkx_graph(graph_type: Type[NETWORKX_GRAPH_TYPE], incl_node_attributes: Union[bool, str, Iterable[str]] = False, incl_edge_attributes: Union[bool, str, Iterable[str]] = False, omit_self_loops: bool = False) -> NETWORKX_GRAPH_TYPE

Return the network data as a networkx graph object.

Parameters:

Name Type Description Default
graph_type Type[NETWORKX_GRAPH_TYPE]

the networkx Graph class to use

required
incl_node_attributes Union[bool, str, Iterable[str]]

if True, all node attributes are included in the graph, if False, none are, otherwise the specified attributes are included

False
incl_edge_attributes Union[bool, str, Iterable[str]]

if True, all edge attributes are included in the graph, if False, none are, otherwise the specified attributes are included

False
omit_self_loops bool

if False, self-loops are included in the graph, otherwise they are not added to the resulting graph (nodes that are only connected to themselves are still included)

False
Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
def as_networkx_graph(
    self,
    graph_type: Type[NETWORKX_GRAPH_TYPE],
    incl_node_attributes: Union[bool, str, Iterable[str]] = False,
    incl_edge_attributes: Union[bool, str, Iterable[str]] = False,
    omit_self_loops: bool = False,
) -> NETWORKX_GRAPH_TYPE:
    """Return the network data as a networkx graph object.

    Arguments:
        graph_type: the networkx Graph class to use
        incl_node_attributes: if True, all node attributes are included in the graph, if False, none are, otherwise the specified attributes are included
        incl_edge_attributes: if True, all edge attributes are included in the graph, if False, none are, otherwise the specified attributes are included
        omit_self_loops: if False, self-loops are included in the graph, otherwise they are not added to the resulting graph (nodes that are only connected to themselves are still included)

    """

    graph = graph_type()

    def add_node(_node_id: int, **attrs):
        graph.add_node(_node_id, **attrs)

    def add_edge(_source: int, _target: int, **attrs):
        graph.add_edge(_source, _target, **attrs)

    self.retrieve_graph_data(
        nodes_callback=add_node,
        edges_callback=add_edge,
        incl_node_attributes=incl_node_attributes,
        incl_edge_attributes=incl_edge_attributes,
        omit_self_loops=omit_self_loops,
    )

    return graph
as_rustworkx_graph(graph_type: Type[RUSTWORKX_GRAPH_TYPE], multigraph: bool = False, incl_node_attributes: Union[bool, str, Iterable[str]] = False, incl_edge_attributes: Union[bool, str, Iterable[str]] = False, omit_self_loops: bool = False, attach_node_id_map: bool = False) -> RUSTWORKX_GRAPH_TYPE

Return the network data as a rustworkx graph object.

Be aware that the node ids in the rustworks graph might not match up with the values of the _node_id column of the original network_data. The original _node_id will be set as an attribute (_node_id) on the nodes.

Parameters:

Name Type Description Default
graph_type Type[RUSTWORKX_GRAPH_TYPE]

the rustworkx Graph class to use

required
multigraph bool

if True, a Multi(Di)Graph is returned, otherwise a normal (Di)Graph

False
incl_node_attributes Union[bool, str, Iterable[str]]

if True, all node attributes are included in the graph, if False, none are, otherwise the specified attributes are included

False
incl_edge_attributes Union[bool, str, Iterable[str]]

if True, all edge attributes are included in the graph, if False, none are, otherwise the specified attributes are included

False
omit_self_loops bool

if False, self-loops are included in the graph, otherwise they are not added to the resulting graph (nodes that are only connected to themselves are still included)

False
attach_node_id_map bool

if True, add the dict describing how the graph node ids (key) are mapped to the original node id of the network data, under the 'node_id_map' key in the graph's attributes

False
Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
def as_rustworkx_graph(
    self,
    graph_type: Type[RUSTWORKX_GRAPH_TYPE],
    multigraph: bool = False,
    incl_node_attributes: Union[bool, str, Iterable[str]] = False,
    incl_edge_attributes: Union[bool, str, Iterable[str]] = False,
    omit_self_loops: bool = False,
    attach_node_id_map: bool = False,
) -> RUSTWORKX_GRAPH_TYPE:
    """
    Return the network data as a rustworkx graph object.

    Be aware that the node ids in the rustworks graph might not match up with the values of the _node_id column of
    the original network_data. The original _node_id will be set as an attribute (`_node_id`) on the nodes.

    Arguments:
        graph_type: the rustworkx Graph class to use
        multigraph: if True, a Multi(Di)Graph is returned, otherwise a normal (Di)Graph
        incl_node_attributes: if True, all node attributes are included in the graph, if False, none are, otherwise the specified attributes are included
        incl_edge_attributes: if True, all edge attributes are included in the graph, if False, none are, otherwise the specified attributes are included
        omit_self_loops: if False, self-loops are included in the graph, otherwise they are not added to the resulting graph (nodes that are only connected to themselves are still included)
        attach_node_id_map: if True, add the dict describing how the graph node ids (key) are mapped to the original node id of the network data, under the 'node_id_map' key in the graph's attributes
    """

    from bidict import bidict

    graph = graph_type(multigraph=multigraph)

    # rustworkx uses 0-based integer indexes, so we don't neeed to look up the node ids (unless we want to
    # include node attributes)

    self._calculate_node_attributes(incl_node_attributes)[1:]
    self._calculate_edge_attributes(incl_edge_attributes)[2:]

    # we can use a 'global' dict here because we know the nodes are processed before the edges
    node_map: bidict = bidict()

    def add_node(_node_id: int, **attrs):
        data = {NODE_ID_COLUMN_NAME: _node_id}
        data.update(attrs)

        graph_node_id = graph.add_node(data)

        node_map[graph_node_id] = _node_id
        # if not _node_id == graph_node_id:
        #     raise Exception("Internal error: node ids don't match")

    def add_edge(_source: int, _target: int, **attrs):

        source = node_map[_source]
        target = node_map[_target]
        if not attrs:
            graph.add_edge(source, target, None)
        else:
            graph.add_edge(source, target, attrs)

    self.retrieve_graph_data(
        nodes_callback=add_node,
        edges_callback=add_edge,
        incl_node_attributes=incl_node_attributes,
        incl_edge_attributes=incl_edge_attributes,
        omit_self_loops=omit_self_loops,
    )

    if attach_node_id_map:
        graph.attrs = {"node_id_map": node_map}

    return graph

GraphProperties

Bases: BaseModel

Properties of graph data, if interpreted as a specific graph type.

Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
605
606
607
608
609
610
611
class GraphProperties(BaseModel):
    """Properties of graph data, if interpreted as a specific graph type."""

    number_of_edges: int = Field(description="The number of edges.")
    parallel_edges: int = Field(
        description="The number of parallel edges (if 'multi' graph type).", default=0
    )

Attributes

number_of_edges: int = Field(description='The number of edges.') class-attribute instance-attribute
parallel_edges: int = Field(description="The number of parallel edges (if 'multi' graph type).", default=0) class-attribute instance-attribute

NetworkGraphProperties

Bases: ValueMetadata

Network data stats.

Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
class NetworkGraphProperties(ValueMetadata):
    """Network data stats."""

    _metadata_key = "network_data"

    number_of_nodes: int = Field(description="Number of nodes in the network graph.")
    properties_by_graph_type: Dict[  # type: ignore
        Literal[
            GraphType.DIRECTED.value,
            GraphType.UNDIRECTED.value,
            GraphType.UNDIRECTED_MULTI.value,
            GraphType.DIRECTED_MULTI.value,
        ],
        GraphProperties,
    ] = Field(description="Properties of the network data, by graph type.")
    number_of_self_loops: int = Field(
        description="Number of edges where source and target point to the same node."
    )

    @classmethod
    def retrieve_supported_data_types(cls) -> Iterable[str]:
        return ["network_data"]

    @classmethod
    def create_value_metadata(cls, value: Value) -> "NetworkGraphProperties":

        network_data: NetworkData = value.data

        num_rows = network_data.num_nodes
        num_edges = network_data.num_edges

        # query_num_edges_directed = f"SELECT COUNT(*) FROM (SELECT DISTINCT {SOURCE_COLUMN_NAME}, {TARGET_COLUMN_NAME} FROM {EDGES_TABLE_NAME})"
        query_num_edges_directed = f"SELECT COUNT(*) FROM {EDGES_TABLE_NAME} WHERE {COUNT_IDX_DIRECTED_COLUMN_NAME} = 1"

        num_edges_directed_result = network_data.query_edges(query_num_edges_directed)
        num_edges_directed = num_edges_directed_result.columns[0][0].as_py()

        query_num_edges_undirected = f"SELECT COUNT(*) FROM {EDGES_TABLE_NAME} WHERE {COUNT_IDX_UNDIRECTED_COLUMN_NAME} = 1"
        num_edges_undirected_result = network_data.query_edges(
            query_num_edges_undirected
        )
        num_edges_undirected = num_edges_undirected_result.columns[0][0].as_py()

        self_loop_query = f"SELECT count(*) FROM {EDGES_TABLE_NAME} WHERE {SOURCE_COLUMN_NAME} = {TARGET_COLUMN_NAME}"
        self_loop_result = network_data.query_edges(self_loop_query)
        num_self_loops = self_loop_result.columns[0][0].as_py()

        num_parallel_edges_directed_query = f"SELECT COUNT(*) FROM {EDGES_TABLE_NAME} WHERE {COUNT_IDX_DIRECTED_COLUMN_NAME} = 2"
        num_parallel_edges_directed_result = network_data.query_edges(
            num_parallel_edges_directed_query
        )
        num_parallel_edges_directed = num_parallel_edges_directed_result.columns[0][
            0
        ].as_py()

        num_parallel_edges_undirected_query = f"SELECT COUNT(*) FROM {EDGES_TABLE_NAME} WHERE {COUNT_IDX_UNDIRECTED_COLUMN_NAME} = 2"
        num_parallel_edges_undirected_result = network_data.query_edges(
            num_parallel_edges_undirected_query
        )
        num_parallel_edges_undirected = num_parallel_edges_undirected_result.columns[0][
            0
        ].as_py()

        directed_props = GraphProperties(number_of_edges=num_edges_directed)
        undirected_props = GraphProperties(number_of_edges=num_edges_undirected)
        directed_multi_props = GraphProperties(
            number_of_edges=num_edges, parallel_edges=num_parallel_edges_directed
        )
        undirected_multi_props = GraphProperties(
            number_of_edges=num_edges, parallel_edges=num_parallel_edges_undirected
        )

        props = {
            GraphType.DIRECTED.value: directed_props,
            GraphType.DIRECTED_MULTI.value: directed_multi_props,
            GraphType.UNDIRECTED.value: undirected_props,
            GraphType.UNDIRECTED_MULTI.value: undirected_multi_props,
        }

        result = cls(
            number_of_nodes=num_rows,
            properties_by_graph_type=props,
            number_of_self_loops=num_self_loops,
        )
        return result

Attributes

number_of_nodes: int = Field(description='Number of nodes in the network graph.') class-attribute instance-attribute
properties_by_graph_type: Dict[Literal[GraphType.DIRECTED.value, GraphType.UNDIRECTED.value, GraphType.UNDIRECTED_MULTI.value, GraphType.DIRECTED_MULTI.value], GraphProperties] = Field(description='Properties of the network data, by graph type.') class-attribute instance-attribute
number_of_self_loops: int = Field(description='Number of edges where source and target point to the same node.') class-attribute instance-attribute

Functions

retrieve_supported_data_types() -> Iterable[str] classmethod
Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
633
634
635
@classmethod
def retrieve_supported_data_types(cls) -> Iterable[str]:
    return ["network_data"]
create_value_metadata(value: Value) -> NetworkGraphProperties classmethod
Source code in /opt/hostedtoolcache/Python/3.11.4/x64/lib/python3.11/site-packages/kiara_plugin/network_analysis/models/__init__.py
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
@classmethod
def create_value_metadata(cls, value: Value) -> "NetworkGraphProperties":

    network_data: NetworkData = value.data

    num_rows = network_data.num_nodes
    num_edges = network_data.num_edges

    # query_num_edges_directed = f"SELECT COUNT(*) FROM (SELECT DISTINCT {SOURCE_COLUMN_NAME}, {TARGET_COLUMN_NAME} FROM {EDGES_TABLE_NAME})"
    query_num_edges_directed = f"SELECT COUNT(*) FROM {EDGES_TABLE_NAME} WHERE {COUNT_IDX_DIRECTED_COLUMN_NAME} = 1"

    num_edges_directed_result = network_data.query_edges(query_num_edges_directed)
    num_edges_directed = num_edges_directed_result.columns[0][0].as_py()

    query_num_edges_undirected = f"SELECT COUNT(*) FROM {EDGES_TABLE_NAME} WHERE {COUNT_IDX_UNDIRECTED_COLUMN_NAME} = 1"
    num_edges_undirected_result = network_data.query_edges(
        query_num_edges_undirected
    )
    num_edges_undirected = num_edges_undirected_result.columns[0][0].as_py()

    self_loop_query = f"SELECT count(*) FROM {EDGES_TABLE_NAME} WHERE {SOURCE_COLUMN_NAME} = {TARGET_COLUMN_NAME}"
    self_loop_result = network_data.query_edges(self_loop_query)
    num_self_loops = self_loop_result.columns[0][0].as_py()

    num_parallel_edges_directed_query = f"SELECT COUNT(*) FROM {EDGES_TABLE_NAME} WHERE {COUNT_IDX_DIRECTED_COLUMN_NAME} = 2"
    num_parallel_edges_directed_result = network_data.query_edges(
        num_parallel_edges_directed_query
    )
    num_parallel_edges_directed = num_parallel_edges_directed_result.columns[0][
        0
    ].as_py()

    num_parallel_edges_undirected_query = f"SELECT COUNT(*) FROM {EDGES_TABLE_NAME} WHERE {COUNT_IDX_UNDIRECTED_COLUMN_NAME} = 2"
    num_parallel_edges_undirected_result = network_data.query_edges(
        num_parallel_edges_undirected_query
    )
    num_parallel_edges_undirected = num_parallel_edges_undirected_result.columns[0][
        0
    ].as_py()

    directed_props = GraphProperties(number_of_edges=num_edges_directed)
    undirected_props = GraphProperties(number_of_edges=num_edges_undirected)
    directed_multi_props = GraphProperties(
        number_of_edges=num_edges, parallel_edges=num_parallel_edges_directed
    )
    undirected_multi_props = GraphProperties(
        number_of_edges=num_edges, parallel_edges=num_parallel_edges_undirected
    )

    props = {
        GraphType.DIRECTED.value: directed_props,
        GraphType.DIRECTED_MULTI.value: directed_multi_props,
        GraphType.UNDIRECTED.value: undirected_props,
        GraphType.UNDIRECTED_MULTI.value: undirected_multi_props,
    }

    result = cls(
        number_of_nodes=num_rows,
        properties_by_graph_type=props,
        number_of_self_loops=num_self_loops,
    )
    return result

Functions